“There is no other sector that holds such a big lever for climate impact”

Gaurav Sant is a professor for civil and environmental engineering as well as materials science and engineering at the University of California, Los Angeles (UCLA). But his interests go beyond the written word as he is also founder of CO2Concrete, a deep-science venture working on manufacturing a low-carbon concrete-equivalent material that releases 75% less carbon than conventional techniques and can store waste carbon dioxide (CO2) too. We talked to him about democratizing data in construction, the future of concrete and whether the building world can deliver on the Paris Agreement.

Gaurav, construction and mining are often overlooked but account for 17% of global CO2 emissions. Meaning that there is obviously a lever here. What is the most promising way to bring down these emissions?

Good question. Just look at the construction phase of a building: over 90 percent of emissions come from the building materials that are used in the building’s construction. That means we have to do something about the production of these materials, innovate and curate low-carbon substitutes, and significantly reduce waste.

Both construction and mining produce materials that are used by other downstream sectors that are effectively hostage to the upstream materials that are available. That means we have to consider the entire supply and value chain, from better decisions in pre-construction to sustainable or circular materials. For all of that, technology plays a key role. And I still believe technology is our best bet to reduce the cost of, and enable decarbonization. But technology won’t get us anywhere if we aren’t able to cultivate and build a social conscience, where we as society demand low-carbon materials and low-carbon products. Here, all of us as individuals are responsible for fostering much-needed change.

Besides building up social awareness and given the fact that over 90 percent of emissions in construction come from building materials: where do we stand with carbon-neutral substitutes?

I think we’ve got a lot of promising substitutes starting to come about. We’ve been building with “soil and straw” for a long time. However, these options are unscalable, as we’ve demonstrated over and over again. For materials like steel or cement, carbon-neutral substitutes already exist in research labs and on a smaller-scale. The question is, how do we really start to scale these solutions and how do we make them accessible economically? How do we really raise the money that is required to bring these solutions to market? How do we make a lot of big bets with an acceptance and a willingness that not everything will work? We’re going to need to deploy a lot of money to find out. Extremely hard things to think about, because, again, this is an extremely reluctant sector that does not prioritize investments in ‘true innovation’. Don’t forget: This is an industry that promotes tradition rather than transformation. But we have to make big bets and accept failure. It’s the only pathway to success, especially with something as radical as carbon-neutral materials.

The funny thing is everyone talks about becoming carbon neutral by 2050. This is 30 years – which is actually a really short period of time. But the money simply isn’t’ flowing in. Why? Because, as a good friend presciently pointed out to me a few years ago, in these commodity sectors, “everyone wants to be the first person to be second!”

Well, then let’s also talk about becoming carbon neutral in 2050. What does that mean for a material like concrete, will we still build with it in 30 years time?

I think the answer is unquestionably, yes. It might be a different composition, color and form of concrete than we use today, which is based on OPC aka ordinary portland cement. But concrete is going to be a part of our future, as it has been in the past and present. The reasons are simple: low-cost, large abundance, and our experience in manufacturing these materials on a large scale around the world. 

But, we have to be pragmatic. OPC-based concrete has been our material of choice for construction for nearly 150 years. A transition is not going to happen overnight. But, for this disruptive transition to occur we need both incremental and transformative innovation. They will work hand in hand over the next few decades to displace and reimagine concrete as we know it. This will leverage a suite of solutions including AI-based materials design and optimization, carbon abatement solutions, and turning CO2 emissions into construction materials such as CO2Concrete.

All that said, we are going to see enormous changes in concrete as a material, how we specify it, and how we use it. Accepting that change and accepting that there’s going to be a new and different concrete to look forward to is a big part of the ‘reset’ that we need to build into our industrial and construction base.

Looking at the need to make construction more efficient and even apply AI, does the sector have the infrastructure ready to do that?

Not really. At least not in a sufficiently democratized manner. It’s a question of infrastructure, data and processes aka algorithms. In some cases data exists, in many others it doesn’t. By solving problems in construction with digital technologies, new data pools emerge everywhere. That is great. But these data pools need to be organized. That is key for me. There needs to be a willingness to share and connect these data pools, because that is when real value is created.

I would argue that really developing and curating the data and being able to develop approaches to democratize the power of data is really where the opportunity lies. However, the construction industry is very reluctant to share data either for reasons that are based on  perceived competitiveness or that are just purely misunderstood.

With regard to AI, we have seen tremendous progress, but much more so in the ‘soft space’ of managing and building new efficiencies and workflows. We have not really looked at using AI to drive actual interventions in physical manufacturing processes. I think this is really where the other big leverage really lies. Just imagine if you can produce every building in the world using 20 percent less of every material that’s used. That’s a big breakthrough and purely leveraged by accessing industrial efficiencies. This works towards the premise that the easiest, and cheapest, carbon abatement that we can make happen is the carbon we don’t emit to begin with.

Isn’t that especially true as the most of construction is yet to come? Studies predict that we are going to add the floor area of Japan to the planet each year. Where does that leave your optimism? Do you think that construction and mining can deliver on the Paris Agreement despite this sheer endless demand for buildings?

Yes, 100 percent. There is no doubt that technologically we have the innovation capacity that’s needed to make this a reality. The question is, do we have the willingness financially to make this come to life and scale it to industrial levels (i.e. billions of tonnes of material production per year)? To me, carbon is not a technological challenge, it’s an economic one. And we will only find an effective answer by scale-up, scale-out, and deep investments in cross-sectoral solutions. We should not so much ask what is the lowest cost for carbon abatement in specific sectors, but rather on a per capita basis. That is also key to me because carbon dioxide is not a sector specific issue; it’s a societal one!

Given the need to translate technologies and research to industrial scale rather soon, what is your recipe for success here?

My recipe is bold and bright minds, venture capital, supportive and timely regulation and a shift in the corporate world. Let’s unpack that. First, we need to draw attention to industries that are the big polluters and convince founders and soon-to-be founders to move into these spaces; in spite of the perception that these sectors are entrenched, and hence “hard to disrupt”. Second, there’s a huge role for venture capital to back new ventures, make big bets, and make sure there is product-market-fit on an industrial level. Ensuring the industrial technology readiness level, so to speak. We have recently seen an inflection of venture capital towards construction and mining, but it’s not even a drop in a bucket. Which is strange, as there is no other sector that is so big, undisrupted and holds such a big lever for climate impact; and has the potential to deliver double-/triple-bottom line impact like few sectors could.Third, we need strong forward-looking, and decisive regulation and policy making, and we need an absolute modification and transformation in corporations around the world and how they think. It’s nice to establish an aspirational pledge regarding how much Corporation X wants to reduce its CO2 emissions. But, often these pledges are just that: aspiration. On the other hand, if corporations (and their shareholders) linked reductions in CO2 emissions to executive compensation, we’ll see that decarbonation is going to be authentic, and it will happen much, much faster. So it’s really about aligning incentives across executive management, consumers (of a corporation’s products or services), and society as a whole.

Thanks Gaurav for taking the time.

Note: Gaurav Sant is a member of the Foundamental advisory board